Immuno-oncologie: une nouvelle ère de traitement

Dr Jean Lépine 23 octobre 2015

Plan

• Immunité et cancer

- Immunothérapie
 - Anticorps monoclonaux
 - Cytokines
 - Thérapies cellulairesellulaire
 - Vaccin
 - Inhibiteurs des points de contrôle

Immunothérapie dans le cancer

- 1957: greffe de moelle osseuse
- 1976: BCG (cancer vessie)
- 1983: IL-2
- 1985: interféron alpha
- 1985: thérapie cellulaire
- 1997: rituximab
- 2010: sipuleucel-T (cancer prostate)
- 2010: ipilimumab (mélanome)
- 2013: anti-PD-1, anti-PD-L1

Défenses immunitaires

- Système inné
 - Macrophages
 - Cellules dendritiques
 - Cellules NK
- Système acquis (adapté)
 - Lymphocytes T (helper, cytotoxic)
 - Lymphocytes B
- Régulateurs
 - Cytokines
 - Interactions cellulaires
 - Cellules régulatrices
 - Lymphocytes Treg,
 - Myeloid-derived suppressor cells(MDSC)
 - etc

Immunité et cancer

Surveillance

- La surveillance immunologique est difficile à prouver.
- Les déficits immunitaires, acquis ou congénitaux, entraînent surtout des tumeurs lymphoïdes.
- Les principales défenses contre le cancer sont cellulaires (réparation du DNA, apoptose)
- La progression tumorale correspond habituellement à une évolution clonale (mutations)

Immunité et cancer

Le système immunitaire peut détecter la présence d'une tumeur et réagir

- Rémission spontanée
- Rémission tardive après cytoréduction
- Valeur pronostique des lymphocytes intratumoraux (TIL)
- Démonstration de lymphocytes cytotoxiques dirigés
- Expérience avec les greffes de cellules souches allogéniques
- Expérience récentes avec l'inhibition des points de contrôle immun

Immunothérapie

- Mode d'action indépendant des autres traitements cytotoxiques (chimiothérapie, radiothérapie).
- Cibles spécifiques épargnant les tissus sains.
- Efficace dans un large spectre de néoplasie.
- Mécanismes multiples et souvent synergiques.
- Possibilités de mémoire et rémission à long terme.
- On traite « le patient plutôt que la tumeur ».

Anticorps monoclonaux

- Mode d'action:
 - Lyse via activation du complément
 - Cytotoxicité dépendant d'anticorps
 - Induction d'apoptose
 - Interférence avec la fonction de la cible (ERFR, HER-2, CD20?)
- Action thérapeutique transitoire
- Monothérapie ou avec chimiothérapie
- Cible la tumeur ou une fonction de l'hôte (immunité, vaisseaux, etc)
- Résistance peut survenir
 - Modulation antigénique de la cible
 - Anticorps neutralisants

Anticorps monoclonaux

- Humanisation
 - Chimérique (...ximab), 65-90% humain
 - Humanisé (...zumab), 90% humain
 - Humain (...umab), 100% humain
- Modifications structurelles
 - Fonctions immunes modifiées
 - Ex: ofutumumab, obinutuzumab
 - Immunotoxines
 - Ex: brentuximab, gemtuzumab
 - Radioimmunoconjugués

Cytokines

- Molécules de communication et régulation entre les cellules.
- Autocrines, paracrine, endocrine
- Secrétées par les cellules immunes ou autres, incluant les cellules tumorales.
- Agissent souvent en cascades
- Fonctions diverses, parfois antagonistes.
- Exemples connus:
 - Interféron-alpha, IL-2, G-CSF

Thérapies cellulaires

- Production ex-vivo de lymphocytes cytotoxiques activés
- Création de lymphocytes modifiés
- Greffe allogénique de moelle osseuse
- Infusion de lymphocytes du donneur

Immunisation in vivo

- Vaccins
 - Cellules dendritiques
 - Antigènes modifiés
 - Adjuvants
- oncolyse

Inhibition des « points de contrôle »

- Blocage des mécanismes de contrôle des lymphocytes cytotoxiques
- Anti-CTLA-4: maintient les signaux d'activation des lymphocytes T par les cellules dendritiques
- Anti-PD-1et anti-PD-L1: maintient l'activité cytotoxique des lymphocytes en contact avec la tumeur

Inhibition des points de contrôle Types de réponses

- Réponse rapide
- Maladie stable, puis régression lente et soutenue
- Progression, nouvelles lésions,
 « pseudoprogression, suivi de régression
- Progression

Anti-CTLA-4: toxicité

- Fréquents (>20%)
 - Rash, prurit
 - Fatigue, fièvre
 - Diarrhées, colite
- Occasionnels (3-20%)
 - Hépatite, « Enzymite »
 - Endocrinopathies
 - Surrénales, thyroïde, hypophyse

- Rares (<2%)
 - Uvéite
 - Pancréatite
 - Neuropathies
 - Pneumonite
 - Néphrite
 - Lymphadénopathies (sarcoide)
 - Thrombocytopénie
 - Nécrolyse épidermale toxique

Anti PD-1: toxicité

- Occasionnels (5-20%)
 - Fatigue, fièvre, arthralgies
 - Rash, prurit, vitiligo
 - Colite
 - Hépatite, pancréatite
 - Endocrinopathies
 - Réactions infusionnelles

- Rares (<5%)
 - Pneumonite
 - anémie

Inhibiteurs de points de contrôle: toxicité

- Survient en moyenne 6-12 semaines après le début du traitement.
- Peut survenir après le premier traitement, après plusieurs mois, ou après la cessation du traitement.
- Les formes les plus sévères sont souvent transitoires si traitées précocement. Leur traitement n'interfère pas nécessairement avec la réponse anti-tumorale.
- Il y a risque de décès avec le retard du traitement.
- Les endocrinopathies surviennent souvent tardivement et sont permanentes.
- 5-10% des patients présentent une augmentation apparente du volume tumoral avant une régression.

Conclusion

- L'immunothérapie peut induire des rémissions prolongées dans un large spectre de tumeurs
- Les toxicités induites par l'immunothérapie requièrent une nouvelle éducation des patients et du personnel soignant.
- L'utilisation optimale de l'immunothérapie en combinaison avec les autres modes thérapeutiques reste à définir.